Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Can you break down this conversion process into logical steps?

Can you fill in the mixed up numbers in this dilution calculation?

Which exact dilution ratios can you make using only 2 dilutions?

Which dilutions can you make using only 10ml pipettes?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Practise your skills of proportional reasoning with this interactive haemocytometer.

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

An environment that enables you to investigate tessellations of regular polygons

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

The classic vector racing game brought to a screen near you.

Use Excel to explore multiplication of fractions.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

To avoid losing think of another very well known game where the patterns of play are similar.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

Use Excel to practise adding and subtracting fractions.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use an interactive Excel spreadsheet to investigate factors and multiples.

A group of interactive resources to support work on percentages Key Stage 4.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...