Here is a solitaire type environment for you to experiment with. Which targets can you reach?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A metal puzzle which led to some mathematical questions.

Match pairs of cards so that they have equivalent ratios.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

An Excel spreadsheet with an investigation.

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Use Excel to practise adding and subtracting fractions.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.