Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Can you beat the computer in the challenging strategy game?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

To avoid losing think of another very well known game where the patterns of play are similar.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

A collection of resources to support work on Factors and Multiples at Secondary level.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Use Excel to investigate the effect of translations around a number grid.

A group of interactive resources to support work on percentages Key Stage 4.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Discover a handy way to describe reorderings and solve our anagram in the process.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

An environment that enables you to investigate tessellations of regular polygons

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Match pairs of cards so that they have equivalent ratios.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A metal puzzle which led to some mathematical questions.

How good are you at finding the formula for a number pattern ?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

The classic vector racing game brought to a screen near you.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Cellular is an animation that helps you make geometric sequences composed of square cells.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

A tool for generating random integers.

Match the cards of the same value.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Use Excel to practise adding and subtracting fractions.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use an interactive Excel spreadsheet to investigate factors and multiples.

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.