Which exact dilution ratios can you make using only 2 dilutions?

Which dilutions can you make using only 10ml pipettes?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Can you break down this conversion process into logical steps?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Can you fill in the mixed up numbers in this dilution calculation?

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use Excel to explore multiplication of fractions.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Match the cards of the same value.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Discover a handy way to describe reorderings and solve our anagram in the process.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A collection of resources to support work on Factors and Multiples at Secondary level.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

An environment that enables you to investigate tessellations of regular polygons

A metal puzzle which led to some mathematical questions.

Match pairs of cards so that they have equivalent ratios.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

A tool for generating random integers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A collection of our favourite pictorial problems, one for each day of Advent.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

The classic vector racing game brought to a screen near you.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Here is a chance to play a fractions version of the classic Countdown Game.

A group of interactive resources to support work on percentages Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.