Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Use Excel to investigate the effect of translations around a number grid.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an interactive Excel spreadsheet to investigate factors and multiples.

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Here is a chance to play a fractions version of the classic Countdown Game.

Use Excel to explore multiplication of fractions.

The classic vector racing game brought to a screen near you.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Have you seen this way of doing multiplication ?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A group of interactive resources to support work on percentages Key Stage 4.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A metal puzzle which led to some mathematical questions.

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Prove Pythagoras Theorem using enlargements and scale factors.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Discover a handy way to describe reorderings and solve our anagram in the process.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Can you beat the computer in the challenging strategy game?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?