Try entering different sets of numbers in the number pyramids. How does the total at the top change?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Use Excel to practise adding and subtracting fractions.

A group of interactive resources to support work on percentages Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

An Excel spreadsheet with an investigation.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A metal puzzle which led to some mathematical questions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Work out how to light up the single light. What's the rule?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

Can you beat the computer in the challenging strategy game?

A collection of our favourite pictorial problems, one for each day of Advent.