It's easy to work out the areas of most squares that we meet, but what if they were tilted?

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

A metal puzzle which led to some mathematical questions.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

A group of interactive resources to support work on percentages Key Stage 4.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Work out how to light up the single light. What's the rule?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Use Excel to explore multiplication of fractions.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Prove Pythagoras Theorem using enlargements and scale factors.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Find the frequency distribution for ordinary English, and use it to help you crack the code.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .