A group of interactive resources to support work on percentages Key Stage 4.

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to investigate the effect of translations around a number grid.

Practise your skills of proportional reasoning with this interactive haemocytometer.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to explore number in this exciting game!

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Use Excel to explore multiplication of fractions.

Work out how to light up the single light. What's the rule?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to practise adding and subtracting fractions.

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

An Excel spreadsheet with an investigation.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?