Find the frequency distribution for ordinary English, and use it to help you crack the code.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to practise adding and subtracting fractions.

A collection of resources to support work on Factors and Multiples at Secondary level.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Here is a chance to play a version of the classic Countdown Game.

Use Excel to explore multiplication of fractions.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

How good are you at finding the formula for a number pattern ?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A metal puzzle which led to some mathematical questions.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Can you beat the computer in the challenging strategy game?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

To avoid losing think of another very well known game where the patterns of play are similar.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.