This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an interactive Excel spreadsheet to explore number in this exciting game!

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Match pairs of cards so that they have equivalent ratios.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

Use Excel to explore multiplication of fractions.

An Excel spreadsheet with an investigation.

Use Excel to investigate the effect of translations around a number grid.

Use an Excel spreadsheet to explore long multiplication.

Here is a chance to play a fractions version of the classic Countdown Game.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A collection of our favourite pictorial problems, one for each day of Advent.

A tool for generating random integers.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The classic vector racing game brought to a screen near you.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A metal puzzle which led to some mathematical questions.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

How good are you at finding the formula for a number pattern ?

An environment that enables you to investigate tessellations of regular polygons

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Discover a handy way to describe reorderings and solve our anagram in the process.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you beat the computer in the challenging strategy game?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

To avoid losing think of another very well known game where the patterns of play are similar.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .