7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Can you work out which spinners were used to generate the frequency charts?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you explain the strategy for winning this game with any target?

Work out how to light up the single light. What's the rule?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.