Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Can you work out which spinners were used to generate the frequency charts?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Use Excel to explore multiplication of fractions.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Discover a handy way to describe reorderings and solve our anagram in the process.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

How good are you at finding the formula for a number pattern ?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A metal puzzle which led to some mathematical questions.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?