The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

An environment that enables you to investigate tessellations of regular polygons

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A collection of our favourite pictorial problems, one for each day of Advent.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Match the cards of the same value.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A tool for generating random integers.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Use Excel to explore multiplication of fractions.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an interactive Excel spreadsheet to investigate factors and multiples.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use an Excel spreadsheet to explore long multiplication.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.