Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

A tool for generating random integers.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to investigate the effect of translations around a number grid.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use Excel to explore multiplication of fractions.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

An environment that enables you to investigate tessellations of regular polygons

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

A metal puzzle which led to some mathematical questions.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A group of interactive resources to support work on percentages Key Stage 4.

Match pairs of cards so that they have equivalent ratios.

The classic vector racing game brought to a screen near you.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Discover a handy way to describe reorderings and solve our anagram in the process.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Square It game for an adult and child. Can you come up with a way of always winning this game?

How good are you at finding the formula for a number pattern ?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Can you beat the computer in the challenging strategy game?

A collection of resources to support work on Factors and Multiples at Secondary level.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

To avoid losing think of another very well known game where the patterns of play are similar.

Have you seen this way of doing multiplication ?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?