Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

A collection of resources to support work on Factors and Multiples at Secondary level.

Have you seen this way of doing multiplication ?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

How good are you at finding the formula for a number pattern ?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Can you beat the computer in the challenging strategy game?

Match pairs of cards so that they have equivalent ratios.

An environment that enables you to investigate tessellations of regular polygons

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

A metal puzzle which led to some mathematical questions.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

To avoid losing think of another very well known game where the patterns of play are similar.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Discover a handy way to describe reorderings and solve our anagram in the process.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

An Excel spreadsheet with an investigation.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Use Excel to practise adding and subtracting fractions.

Here is a chance to play a fractions version of the classic Countdown Game.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.