Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A group of interactive resources to support work on percentages Key Stage 4.

An environment that enables you to investigate tessellations of regular polygons

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

A tool for generating random integers.

How good are you at finding the formula for a number pattern ?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Use an Excel spreadsheet to explore long multiplication.

Match pairs of cards so that they have equivalent ratios.

Use Excel to investigate the effect of translations around a number grid.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Use an interactive Excel spreadsheet to investigate factors and multiples.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Have you seen this way of doing multiplication ?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Use Excel to explore multiplication of fractions.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

A collection of our favourite pictorial problems, one for each day of Advent.

Can you beat the computer in the challenging strategy game?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Here is a chance to play a fractions version of the classic Countdown Game.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?