Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you have only four weights, where could you place them in order to balance this equaliser?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Here is a chance to play a version of the classic Countdown Game.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

An environment which simulates working with Cuisenaire rods.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you complete this jigsaw of the multiplication square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you find all the different ways of lining up these Cuisenaire rods?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Exchange the positions of the two sets of counters in the least possible number of moves

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

An interactive activity for one to experiment with a tricky tessellation

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?