Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Find out what a "fault-free" rectangle is and try to make some of your own.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these people?

Can you complete this jigsaw of the multiplication square?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Work out the fractions to match the cards with the same amount of money.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .