Can you work out which spinners were used to generate the frequency charts?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Use the interactivity or play this dice game yourself. How could you make it fair?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Work out how to light up the single light. What's the rule?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

A tool for generating random integers.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Can you fit the tangram pieces into the outline of Little Fung at the table?