Can you fit the tangram pieces into the outline of this shape. How would you describe it?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the rocket?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Mai Ling?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you fit the tangram pieces into the outline of Little Ming?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

What is the greatest number of squares you can make by overlapping three squares?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.