Find the frequency distribution for ordinary English, and use it to help you crack the code.

A game in which players take it in turns to choose a number. Can you block your opponent?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivities to complete these Venn diagrams.

If you have only four weights, where could you place them in order to balance this equaliser?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Could games evolve by natural selection? Take part in this web experiment to find out!

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you complete this jigsaw of the multiplication square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A collection of resources to support work on Factors and Multiples at Secondary level.

Here is a chance to play a version of the classic Countdown Game.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

An environment which simulates working with Cuisenaire rods.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Work out how to light up the single light. What's the rule?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Train game for an adult and child. Who will be the first to make the train?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?