Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

If you have only four weights, where could you place them in order to balance this equaliser?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Work out how to light up the single light. What's the rule?

Can you complete this jigsaw of the multiplication square?

Here is a chance to play a version of the classic Countdown Game.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A collection of resources to support work on Factors and Multiples at Secondary level.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivities to complete these Venn diagrams.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Square It game for an adult and child. Can you come up with a way of always winning this game?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?