Can you work out which spinners were used to generate the frequency charts?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Use the interactivity or play this dice game yourself. How could you make it fair?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Train game for an adult and child. Who will be the first to make the train?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

The classic vector racing game brought to a screen near you.