Can you work out which spinners were used to generate the frequency charts?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Use the interactivity or play this dice game yourself. How could you make it fair?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Here is a chance to play a version of the classic Countdown Game.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Work out how to light up the single light. What's the rule?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of this telephone?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?