First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this jigsaw of the multiplication square?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a chance to play a version of the classic Countdown Game.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Find out what a "fault-free" rectangle is and try to make some of your own.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different triangles on these peg boards, and find their angles?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Can you find all the different ways of lining up these Cuisenaire rods?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?