First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Can you complete this jigsaw of the multiplication square?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Work out the fractions to match the cards with the same amount of money.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?