Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a chance to play a version of the classic Countdown Game.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you explain the strategy for winning this game with any target?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you complete this jigsaw of the multiplication square?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

If you have only four weights, where could you place them in order to balance this equaliser?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

An environment which simulates working with Cuisenaire rods.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Work out how to light up the single light. What's the rule?

Use the interactivities to complete these Venn diagrams.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Try out the lottery that is played in a far-away land. What is the chance of winning?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A collection of resources to support work on Factors and Multiples at Secondary level.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Exchange the positions of the two sets of counters in the least possible number of moves

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An interactive activity for one to experiment with a tricky tessellation

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!