Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If you have only four weights, where could you place them in order to balance this equaliser?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you complete this jigsaw of the multiplication square?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Work out the fractions to match the cards with the same amount of money.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

An environment which simulates working with Cuisenaire rods.

These interactive dominoes can be dragged around the screen.

Here is a chance to play a version of the classic Countdown Game.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

How many different triangles can you make on a circular pegboard that has nine pegs?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Try out the lottery that is played in a far-away land. What is the chance of winning?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

An interactive activity for one to experiment with a tricky tessellation