Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you work out which spinners were used to generate the frequency charts?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Work out the fractions to match the cards with the same amount of money.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A metal puzzle which led to some mathematical questions.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

An environment which simulates working with Cuisenaire rods.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?