Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you complete this jigsaw of the multiplication square?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you explain the strategy for winning this game with any target?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Here is a chance to play a version of the classic Countdown Game.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Work out how to light up the single light. What's the rule?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

These interactive dominoes can be dragged around the screen.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive activity for one to experiment with a tricky tessellation

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you find all the different triangles on these peg boards, and find their angles?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many different triangles can you make on a circular pegboard that has nine pegs?