Here is a chance to play a version of the classic Countdown Game.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you complete this jigsaw of the multiplication square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

If you have only four weights, where could you place them in order to balance this equaliser?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

An environment which simulates working with Cuisenaire rods.

An interactive activity for one to experiment with a tricky tessellation

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Exchange the positions of the two sets of counters in the least possible number of moves

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Try out the lottery that is played in a far-away land. What is the chance of winning?

Work out how to light up the single light. What's the rule?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Train game for an adult and child. Who will be the first to make the train?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.