Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you complete this jigsaw of the multiplication square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Here is a chance to play a version of the classic Countdown Game.

If you have only four weights, where could you place them in order to balance this equaliser?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

An environment which simulates working with Cuisenaire rods.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you explain the strategy for winning this game with any target?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Work out how to light up the single light. What's the rule?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Exchange the positions of the two sets of counters in the least possible number of moves

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Use the interactivities to complete these Venn diagrams.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?