Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

If you have only four weights, where could you place them in order to balance this equaliser?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you find all the different ways of lining up these Cuisenaire rods?

Find out what a "fault-free" rectangle is and try to make some of your own.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

How many different triangles can you make on a circular pegboard that has nine pegs?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you find all the different triangles on these peg boards, and find their angles?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.