Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Work out how to light up the single light. What's the rule?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Granma T?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Can you fit the tangram pieces into the outline of Little Fung at the table?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Can you fit the tangram pieces into the outlines of these clocks?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.