Use the interactivities to complete these Venn diagrams.

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

These interactive dominoes can be dragged around the screen.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you fit the tangram pieces into the outline of this telephone?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outline of this junk?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Granma T?

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

An interactive activity for one to experiment with a tricky tessellation

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Exchange the positions of the two sets of counters in the least possible number of moves

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outlines of the chairs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of the child walking home from school?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.