How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

A metal puzzle which led to some mathematical questions.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outlines of these people?

An interactive activity for one to experiment with a tricky tessellation

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you find all the different triangles on these peg boards, and find their angles?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Exchange the positions of the two sets of counters in the least possible number of moves

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

What is the greatest number of squares you can make by overlapping three squares?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

These interactive dominoes can be dragged around the screen.

Use the interactivities to complete these Venn diagrams.

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

If you have only four weights, where could you place them in order to balance this equaliser?