How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Here is a chance to play a version of the classic Countdown Game.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you complete this jigsaw of the multiplication square?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

An environment which simulates working with Cuisenaire rods.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you find all the different ways of lining up these Cuisenaire rods?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Use the interactivities to complete these Venn diagrams.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

How many different triangles can you make on a circular pegboard that has nine pegs?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you find all the different triangles on these peg boards, and find their angles?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?