Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

If you have only four weights, where could you place them in order to balance this equaliser?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you complete this jigsaw of the multiplication square?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Here is a chance to play a version of the classic Countdown Game.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

An environment which simulates working with Cuisenaire rods.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive activity for one to experiment with a tricky tessellation

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Train game for an adult and child. Who will be the first to make the train?

Exchange the positions of the two sets of counters in the least possible number of moves