Can you complete this jigsaw of the multiplication square?

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Here is a chance to play a version of the classic Countdown Game.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you find all the different ways of lining up these Cuisenaire rods?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

An environment which simulates working with Cuisenaire rods.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

These interactive dominoes can be dragged around the screen.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Use the interactivities to complete these Venn diagrams.