Use the interactivity or play this dice game yourself. How could you make it fair?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the chairs?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Work out the fractions to match the cards with the same amount of money.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

These interactive dominoes can be dragged around the screen.

What is the greatest number of squares you can make by overlapping three squares?

An interactive activity for one to experiment with a tricky tessellation

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Exchange the positions of the two sets of counters in the least possible number of moves

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?