Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Granma T?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the interactivity or play this dice game yourself. How could you make it fair?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the rocket?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

These interactive dominoes can be dragged around the screen.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Work out the fractions to match the cards with the same amount of money.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?