Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many different triangles can you make on a circular pegboard that has nine pegs?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Can you find all the different triangles on these peg boards, and find their angles?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An environment which simulates working with Cuisenaire rods.

Can you fit the tangram pieces into the outline of Granma T?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Can you fit the tangram pieces into the outlines of the chairs?

Can you complete this jigsaw of the multiplication square?

Can you fit the tangram pieces into the outline of this junk?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you fit the tangram pieces into the outlines of the candle and sundial?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.