Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of Little Ming?

What is the greatest number of squares you can make by overlapping three squares?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Work out the fractions to match the cards with the same amount of money.