Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

If you have only four weights, where could you place them in order to balance this equaliser?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you complete this jigsaw of the multiplication square?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Work out how to light up the single light. What's the rule?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Here is a chance to play a version of the classic Countdown Game.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

What is the greatest number of squares you can make by overlapping three squares?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

An interactive activity for one to experiment with a tricky tessellation

These interactive dominoes can be dragged around the screen.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?