The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Match pairs of cards so that they have equivalent ratios.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you beat the computer in the challenging strategy game?

Here is a chance to play a fractions version of the classic Countdown Game.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Here is a chance to play a version of the classic Countdown Game.

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

What is the greatest number of squares you can make by overlapping three squares?

Use Excel to explore multiplication of fractions.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

A collection of our favourite pictorial problems, one for each day of Advent.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

An environment that enables you to investigate tessellations of regular polygons

Can you fit the tangram pieces into the outlines of these clocks?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?