Find out what a "fault-free" rectangle is and try to make some of your own.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you find all the different triangles on these peg boards, and find their angles?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different triangles can you make on a circular pegboard that has nine pegs?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you fit the tangram pieces into the outline of Mai Ling?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you fit the tangram pieces into the outline of Granma T?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

An environment which simulates working with Cuisenaire rods.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this junk?

Here is a chance to play a version of the classic Countdown Game.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you fit the tangram pieces into the outlines of the chairs?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?