First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you find all the different triangles on these peg boards, and find their angles?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

How many different triangles can you make on a circular pegboard that has nine pegs?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you complete this jigsaw of the multiplication square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Try out the lottery that is played in a far-away land. What is the chance of winning?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Match pairs of cards so that they have equivalent ratios.

Exchange the positions of the two sets of counters in the least possible number of moves

Work out the fractions to match the cards with the same amount of money.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Here is a chance to play a version of the classic Countdown Game.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you find all the different ways of lining up these Cuisenaire rods?

Find out what a "fault-free" rectangle is and try to make some of your own.

If you have only four weights, where could you place them in order to balance this equaliser?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .