Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Exchange the positions of the two sets of counters in the least possible number of moves

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

An interactive activity for one to experiment with a tricky tessellation

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Train game for an adult and child. Who will be the first to make the train?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Work out the fractions to match the cards with the same amount of money.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Use the interactivity or play this dice game yourself. How could you make it fair?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of Granma T?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of these clocks?

These interactive dominoes can be dragged around the screen.

Can you fit the tangram pieces into the outline of this junk?

How many different triangles can you make on a circular pegboard that has nine pegs?