A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you have only four weights, where could you place them in order to balance this equaliser?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive activity for one to experiment with a tricky tessellation

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Exchange the positions of the two sets of counters in the least possible number of moves

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you complete this jigsaw of the multiplication square?

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

Can you fit the tangram pieces into the outline of Granma T?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

What is the greatest number of squares you can make by overlapping three squares?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity or play this dice game yourself. How could you make it fair?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Work out the fractions to match the cards with the same amount of money.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?