Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the interactivity or play this dice game yourself. How could you make it fair?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you find all the different ways of lining up these Cuisenaire rods?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

How many different triangles can you make on a circular pegboard that has nine pegs?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Can you complete this jigsaw of the multiplication square?

An environment which simulates working with Cuisenaire rods.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find all the different triangles on these peg boards, and find their angles?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Find out what a "fault-free" rectangle is and try to make some of your own.

Here is a chance to play a version of the classic Countdown Game.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.