Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Use the interactivity or play this dice game yourself. How could you make it fair?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

If you have only four weights, where could you place them in order to balance this equaliser?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find all the different triangles on these peg boards, and find their angles?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you complete this jigsaw of the multiplication square?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Here is a chance to play a version of the classic Countdown Game.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

An environment which simulates working with Cuisenaire rods.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?