Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Try out the lottery that is played in a far-away land. What is the chance of winning?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Find out what a "fault-free" rectangle is and try to make some of your own.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you find all the different ways of lining up these Cuisenaire rods?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you find triangles on a 9-point circle? Can you work out their angles?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you fit the tangram pieces into the outlines of these clocks?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Work out the fractions to match the cards with the same amount of money.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you fit the tangram pieces into the outlines of these people?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you complete this jigsaw of the multiplication square?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.