Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Find out what a "fault-free" rectangle is and try to make some of your own.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you find all the different ways of lining up these Cuisenaire rods?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Here is a chance to play a version of the classic Countdown Game.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of these rabbits?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.