Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

If you have only four weights, where could you place them in order to balance this equaliser?

A game for two or more players that uses a knowledge of measuring tools. Spin the spinner and identify which jobs can be done with the measuring tool shown.

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Use the interactivity to move Mr Pearson and his dog. Can you move him so that the graph shows a curve?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you complete this jigsaw of the multiplication square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Here is a chance to play a version of the classic Countdown Game.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you find all the different ways of lining up these Cuisenaire rods?

Find out what a "fault-free" rectangle is and try to make some of your own.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Work out the fractions to match the cards with the same amount of money.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Exchange the positions of the two sets of counters in the least possible number of moves

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Try out the lottery that is played in a far-away land. What is the chance of winning?