Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of these convex shapes?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the chairs?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this telephone?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Granma T?

What is the greatest number of squares you can make by overlapping three squares?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Use the interactivity or play this dice game yourself. How could you make it fair?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.