Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Match pairs of cards so that they have equivalent ratios.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Use Excel to explore multiplication of fractions.

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

What is the greatest number of squares you can make by overlapping three squares?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Find out what a "fault-free" rectangle is and try to make some of your own.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

An environment that enables you to investigate tessellations of regular polygons

A collection of our favourite pictorial problems, one for each day of Advent.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Here is a chance to play a version of the classic Countdown Game.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?